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Gravitational Spin Entropy Production
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Spin entropy production for particles with arbitrary spin moving in a curved spacetime
is discussed. There is a Wigner rotation due to both the acceleration an the curvature,
which causes an initial pure state to transform into a final mixed state. Depending on
the spacetime characteristics, one may find paths on which there is no Wigner rotation
and the state remains pure.

KEY WORDS: local inertial frame; Wigner rotation; density matrix; spin entropy;
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1. INTRODUCTION

Traditionally, Quantum communication theory is based on the entanglement,
which is a property unique to quantum systems. This is a strange feature of quan-
tum theory and leads to a nonlocal correlation called the Einstein–Podolsky–Rozen
(EPR) correlation (Einstein et al., 1935; Bohm, 1989). Therefore, it is important
to study all those processes that might affect quantum entanglement. Recently,
a number of papers have discussed how entanglement is affected by the Lorentz
transformation in the jargon of special relativity. For instance, Peres et al. showed
that reduced density matrix for the spin of a single free spin- 1

2 particle is not
covariant under Lorentz boosts, that is, the spin entropy is not a relativistic scalar
(Peres et al., 2002). Also, Gingrich and Adami showed that entanglement be-
tween two systems depends on the frame in which this entanglement is measured,
such that, a fully entangled spin- 1

2 system loses entanglement if observed by a
Lorentz-boosted observer. They discussed, while the entanglement between spin
or momentum alone may change due to Lorentz boosts, the entanglement of the
entire wave function incorporating spin and momentum is invariant (Gingrich and
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Adami, 2002). More works of this kind can be traced in Alsing and Milborn (2002)
and Li and Du (2003).

Recently, the question of how entanglement is affected by a gravitational field
is discussed by Terashima and Ueda by extending these considerations to general
relativity (Terashima and Ueda, 2004). They have discussed a mechanism of spin
decoherence caused by spacetime curvature for spin- 1

2 particles moving in a grav-
itational field. In general relativity, a gravitational field represented by spacetime
curvature, causes to break the global rotational symmetry. Therefore, the spin in
general relativity can be defined only locally by invoking the rotational symmetry
of the local inertial frame. Consequently, the motion of the particle in a curved
spacetime is accompanied by a continues succession of Lorentz transformations
(Terashima and Ueda, 2005). It is shown that this effect gives rise to a spin entropy
production that is unique to general relativity. This means that even if the state of
the particle is pure at one spacetime point, it becomes mixed at another spacetime
point.

In this paper, regarding the work done by Terashima and Ueda, we discuss the
gravitational spin entropy production for particles with arbitrary spin. We employ
a wave packet that its centroid traces a classical path in the curved spacetime.
It is assumed that the spacetime curvature does not change extremely within the
spacetime scale of the wave packet. We show explicitly that the state of moving
particles changes because of successive Lorentz transformations and that there
exists a Wigner rotation due to both the acceleration and the curvature that changes
the spin part of the state. Therefore, an initial pure state, finally becomes mixed,
leading to a production of spin entropy. Then, we apply our general results for
static spherically symmetric spacetimes by considering the centroid moving along
circular or radial paths.

2. SPIN IN CURVED SPACETIME

As is well known, a gravitational field in general relativity is described by
a metric gµν(x). Here we need to define the spin of a particle in the curved
spacetime. Conveniently, we introduce a local inertial frame at each point of
spacetime through a tetrad ea

µ(x) defined as

ea
µ(x)eb

ν(x)gµν(x) = ηab, (1)

where ηab = diag(−1, 1, 1, 1) is the Minkowski metric (Nakahara, 1991). This
tetrad apparently transforms the general coordinate xµ to a local inertial frame xa .
Here and henceforth, it is assumed that Latin indices run over the four inertial-
coordinate labels 0, 1, 2, 3 while, Greek letters run over the four general-coordinate
labels. The inverse of the tetrad ea

µ(x) is defined as

ea
µ(x)ea

ν(x) = δµ
ν, ea

µ(x)eb
µ(x) = δa

b. (2)
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Using the tetrad and its inverse, we can transform a tensor given in the general
coordinate system into one in the local inertial frame, and vice versa. It must be
noted that the choice of the local inertial frames is not unique, since the inertial
frame remains inertial under the local Lorentz transformation. More precisely,
definitions (1) and (2) remain intact under the transformation

e′
a
µ(x) = �a

b(x)eb
µ(x), e′ a

µ(x) = �a
b(x)eb

µ(x). (3)

where �a
b(x) denotes the local Lorentz transformation including spatial rotations

and boosts. Here, a particle is specified by the tetrad e0
µ, which relates the local

time to a global time. Of course, since we cannot uniquely choose the time
coordinate to define the positive energy, the definition of a particle is not unique
(Birrel and Davies, 1982). Now, a particle with spin s in the curved spacetime is
defined as a particle whose one-particle states furnish the spin-s representation
of the local Lorentz transformation. In other words, the spin angular momentum
components in the local inertial frame are just the generators of the local rotation
group.

Consider that the centroid of a wave packet of a massive spin-s particle is
located at point xµ and is moving with four-velocity uµ(x) = dxµ/dτ , that is
normalized as uµ(x)uν(x) = −c2. Let M be the mass of the particle. The four-
momentum of the centroid then becomes qa(x) = ea

µ(x) (Muµ(x)) in the local
inertial frame at the point xµ. Using this local inertial frame, we can describe
the wave packet as in the special relativity. It is required to assume that the
spacetime curvature does not change drastically within the spacetime scale of the
wave packet that describes a state of the particle (Terashima and Ueda, 2005).
In the local inertial frame, the one-particle momentum eigenstate is described as
|pa,m〉 where pa = (

√
|p|2 + m2c2, p) is the four momentum of the particle and

m denotes the z-components of the spin, such that −s ≤ m ≤ s. Then a wave
packet with positive energy, has the form

|ψ〉 =
∑

m

∫
d3p

(
Mc

p0

)
C(pa,m)|pa,m〉, (4)

where d3p
(

Mc
p0

)
is a Lorentz-invariant volume element and the amplitudes

C(pa,m) determine the admixture of the one particle momentum eigenstates
in the wave packet. Normalizing |ψ〉 to unity implies

∑

m

∫
d3p

(
Mc

p0

)
|C(pa,m)|2 = 1, (5)

provided that 〈p′a,m′|pa,m〉 = (
p0

Mc

)
δ3(p′ − p)δm′m. Corresponding to the wave

packet (4), there exists a density matrix ρ = |ψ〉〈ψ |, which its trace over the
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momentum leads to the reduced density matrix for the spin, that is

(�)m′m =
∫

d3p

(
Mc

p0

)
C(pa,m′)C∗(pa,m). (6)

Then the spin entropy of the wave packet at every point xµ is the von Newman
entropy of this reduced density matrix, defined as

S(x) = −Tr
[
� log2 �

]
. (7)

After an infinitesimal proper time dτ , the centroid moves to a new point
x ′µ = xµ + uµ(x)dτ , and the wave packet is then described by the local inertial
frame at the new point x ′µ. In the new local inertial frame, the momentum of the
centroid changes to qa(x ′) = qa(x) + δqa(x). The explicit form of δqa(x) is given
by Terashima and Ueda (2004)

δqa(x) = λa
b(x)qb(x)dτ, (8)

with

λa
b(x) = − 1

mc2
[aa(x)qb(x) − qa(x)ab(x)] + χa

b(x), (9)

where

aa(x) = ea
µ(x)

(
uν(x)∇νu

µ(x)
)
, (10)

is the acceleration caused by the external force, and

χa
b(x) = uµ(x)

(
eb

ν(x)∇µea
ν(x)

)
, (11)

is the change in the local inertial frame along uµ(x).
The first term in (9) exists even in special relativity. While, the second term due

to the spacetime curvature exists only in general relativity. For geodesic motions of
the centroid, aa(x) = 0 and the first term vanishes. It must be noted that λa

b given
by (9) satisfies the condition λab = −λba , such that the infinitesimal local Lorentz
transformation can be written as as �a

b(x) = δa
b + λa

b(x)dτ . Corresponding to
the local LT �a

b(x), there exists a unitary operator, denoted by U (�a
b(x)), which

transforms the momentum eigenstate as

|pa,m〉 → U (�(x))|pa,m〉. (12)

It can be shown that the state U (�)|pa,m〉 is also the eigenstate of the momentum
operator but with the eigenvalue �p and we can write at every point (Weinberg,
1995)

U (�(x)|pa,m〉 =
∑

m′
D

(s)
m′m(W (�(x), p))|�pa,m′〉, (13)
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where Wa
b(�(x), p) is the Wigner rotation and D

(s)
m′m(W (�(x), p)) is its

unitary representation. The infinitesimal Wigner rotation is represented
as

Wa
b(�(x), p) = δa

b + ϑa
bdτ, (14)

where ϑ0
0(x) = ϑ0

i(x) = ϑi
0(x) = 0 and

ϑi
k(x) = λi

k(x) + λi
0(x)pk(x) − λk0(x)pi(x)

p0(x) + Mc
, (15)

where i and k run over the three spatial inertial frame labels (1, 2, 3). Note that
ϑii = 0. The infinitesimal Wigner rotation (14) has correspondingly a spin-s irre-
ducible representation as

D
(s)
m′m(W (�(x), p)) = δm′m + iϑ23(x)

(
J

(s)
1

)
m′mdτ + iϑ31(x)

(
J

(s)
2

)
m′mdτ

+ iϑ12(x)
(
J

(s)
3

)
m′mdτ, (16)

where {J (s)
1 , J

(s)
2 , J

(s)
3 } are the generators of the rotation group in a (2s + 1)-

dimensional representation (Weinberg, 1995).
When the centroid moves along a path xµ(τ ) from x

µ

i = xµ(τi) to x
µ

f =
xµ(τf ), the motion of the wave packet is accompanied by a LT given by Terashima
and Ueda (2005)

�(xf , xi) = T exp

[∫ xf

xi

λ (x(τ )) dτ

]
, (17)

and, a Wigner rotation as

W (�(xf , xi), p) = T exp

[∫ xf

xi

w (x(τ )) dτ

]
, (18)

where T is the time-ordering operator and λ and w are matrices that their compo-
nents are given by (9) and (15), respectively.

Suppose that in the local inertial frame at the initial point x
µ

i , the wave packet
is denoted as |ψ (i)〉 as given by (4), with corresponding reduced density matrix
�

(i)
m′m as given by (6). Then, in the local inertial frame at the final point x

µ

f , the
wave packet will be

|ψ (f )〉 = U (�(xf , xi))|ψ (i)〉 =
∑

m

∑

m′

∫
dp

(
Mc

p0

)
C(pa,m)

×D
(s)
m′m(W (�(xf , xi), p))|�p,m′〉, (19)
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which leads to a reduced density matrix as

�
(f )
m′m =

∑

m′′m′′′

∫
dp

(
Mc

p0

)
C(pa,m′′)C∗(pa,m′′′)

×D
(s)
m′m′′ (W (�(xf , xi), p))D(s)∗

mm′′′ (W (�(xf , xi), p)). (20)

For instance, assume that at the initial proper time τi , the coefficient of
expansion in (4) is written as C(pa,m) = F (pa)δm,s where F (pa) is a normalized
function having a significant peak at the four-momentum of the centroid qa .
Substituting this in (6), we obtain the initial reduced density matrix as

�(i) =

⎛

⎜⎜⎜⎜
⎝

1 0 · · · 0

0 0 · · · 0
...

...
. . . 0

0 0 0 0

⎞

⎟⎟⎟⎟
⎠

, (21)

which apparently describes a pure state with zero spin entropy. While, the final
reduced density matrix (20) becomes

�(f ) =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

|D(s)
s,s | 2 D

(s)
s,sD

(s)∗
s−1,s · · · D

(s)
s,sD

(s)∗
−s,s

D
(s)
s−1,sD

(s)∗
s,s |D(s)

s−1,s | 2 · · · D
(s)
s−1,sD

(s)∗
−s,s

...
...

. . .
...

D
(s)
−s,sD

(s)∗
s,s D

(s)
−s,sD

(s)∗
s−1,s · · · |D(s)

−s,s | 2

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

, (22)

where overline is defined as X = ∫
dpN (pa)|F (pa)|2X(pa) which denotes the

average over the momentum distribution. The state described by (22) is generally
mixed and there exists a spin entropy, generated by the gravity and acceleration,
given by

S(f ) = −
2s+1∑

i=1

d
(s)
i log2 d

(s)
i , (23)

where d
(s)
i denotes the i-th eigenvalue of �(f ). Consequently, even if the initial

state is pure, after moving in the curved spacetime, the final state will be mixed.
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3. SPIN ENTROPY PRODUCTION IN A STATIC SPHERICALLY
SYMMETRIC SPACETIME

Here we consider the gravitation field to be a static spherically symmetric
described as

ds2 = −c2e2A(r)dt2 + e2B(r)dr2 + r2 (
dθ2 + sin2 θ dφ2) (24)

where A(r) andB(r) are two functions to be determined. Let the metric be asymp-
totically flat. This assumption imposes the following conditions on A(r) and B(r),

lim
r→∞ A(r) = lim

r→∞ B(r) = 0. (25)

It must be noted that since the metric (24) is static, the time coordinate t is a
Killing time.

We require to introduce a static observer with a static local inertial frame at
each point in the spacetime (24). Therefore, we choose the tetrad defined in (1) as

e0
t = 1

c
e−A(r), e1

r = e−B(r), e2
θ = 1

r
, e3

φ = 1

r sin θ
, (26)

with all the other components being zero. By this choice, the local inertial time
coordinate x0 is parallel to the Killing time coordinate t .

In the following, we will consider spin-s particles moving in a spacetime
described by (24). We will argue on circular and radial motions, separately.

3.1. Circular Motion Around the Center

Suppose that the centroid of the wave packet of a particle with spin-s is
moving with a constant speed v on a circle with radius r around the center.
Regarding the spherical symmetry of the metric, we can choose the plane of
motion to be the equatorial plane θ = π

2 . If v is measured by an observer in the
local inertial frame, who uses inertial coordinate labels (0, 1, 2, 3), we can write

v = c
d 3̂

d 0̂
= c

e3
φ dφ

e0
t dt

= re−A(r) dφ

dt
. (27)

Then, we obtain the non-zero components of the four-velocity as

ut = e−A(r) cosh ξ, uφ = c

r
sinh ξ, (28)

where ξ = tanh−1( v
c
). Accordingly, the components of the four-momentum of the

centroid in the local inertial frame at any point are

q0 = Mc cosh ξ, q1 = q2 = 0, q3 = Mc sinh ξ, (29)
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which are constant. Moreover, after some manipulation we see that in this case,
the acceleration (10) have only a non-zero component as

a1(r) = c2e−B(r)

(
A′(r)cosh2ξ − 1

r
sinh2ξ

)
. (30)

where prime denotes the differentiation with respect to r . This acceleration gives
rise to a generalized Thomas precession, via the first term of (9).

Now, regarding (11) and after doing some manipulation, we obtain in this
case the non-zero components of χa

b(x) as

χ0
1(r) = χ1

0(x) = −c A′(r)e−B(r) cosh ξ, (31)

which consists of a boost along the 1-axis, and

χ1
3(r) = −χ3

1(r) = c
e−B(r)

r
sinh ξ (32)

which generates spatial rotations about the 2-axis.
Then, substituting these results in (9), we see that λa

b(x) has only four non-
zero components as

λ1
0(r) = λ0

1(r) =
(

A′(r) − 1

r

)
c e−B(r) sinh2 ξ cosh ξ, (33)

λ1
3(r) = −λ3

1(r) = −
(

A′(r) − 1

r

)
c e−B(r) sinh ξ cosh2 ξ, (34)

which lead to the following non-zero components for ϑa
b

ϑ1
3(pa) = −ϑ3

1(pa) = c

(
A′(r) − 1

r

)
e−B(r)

(
p3

p0 + Mc
− 1

)
sinh ξ cosh2 ξ

(35)
where we have used (29). Then the corresponding infinitesimal Wigner rotation
(14), becomes

D
(s)
m′m(W (�), p) = δm′m + iϑ(pa)

(
J

(s)
2

)
m′mdτ (36)

where

ϑ(pa) = ϑ31(pa) = q3q0

M3c2
e−B(r)

(
A′(r) − 1

r

) (
q3p3

p0 + Mc
− q0

)
. (37)

Since ϑ(pa) is independent of time, we do not need to apply the time ordering
operator and we can simply generalize the infinitesimal Wigner rotation (36) for
a finite time interval τ = τf − τi , that is

D(s)(W (�(τ ), p)) = exp
[
iJ

(s)
2 ϑ(pa)τ

]
, (38)
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which represents a rotation about 2-axis with an angle of rotation ϑ(pa)τ . The ele-
ments of (38) can be obtained generally by the Wigner’s formula, that is (Sakurai,
1985)

D
(s)
m′m(W (�(τ ), p)) =

∑

k

(−1)k
√

(s + m)!(s − m)!(s + m′)!(s − m′)!
(s + m − k)!k!(s − k − m′)!(k − m + m′)!

×
(

cos
ϑ(pa)τ

2

)2s−2k+m−m′(
sin

ϑ(pa)τ

2

)2k−m+m′

(39)

where the sum over k is taken whenever none the arguments of factorials are
negative. Substituting these elements in (22), we can determine the final density
matrix for a given s. Of course, this matrix will be too sophisticated to be used.
Here, as two simple examples we give the results for s = 1

2 and s = 1 cases.
Choosing s = 1

2 in (39), we obtain

�(f ) = 1

2

(
1 + cos ϑτ −sin ϑτ

−sin ϑτ 1 − cos ϑτ

)
. (40)

While, for s = 1 the final density �(f ) becomes
⎛

⎜⎜⎜
⎝

1
4 (1 + cos ϑτ )2 −

√
2

4 (1 + cos ϑτ ) sin ϑτ 1
4 sin2 ϑτ

−
√

2
4 (1 + cos ϑτ ) sin ϑτ 1

2 sin2 ϑτ −
√

2
4 (1 − cos ϑτ ) sin ϑτ

1
4 sin2 ϑτ −

√
2

4 (1 − cos ϑτ ) sin ϑτ 1
4 (1 − cos ϑτ )2

⎞

⎟⎟⎟
⎠

One may argue that, according to (37) if A(r) satisfies the condition
rA′(r) = 1, ϑ(pa) will vanish and therefore the final density matrix (22) becomes
identical with the initial pure density matrix (21). But, solving this condition, we
obtain A(r) ∼ ln r , which leads to g00 ∼ r . This apparently violates the asymptotic
flatness of the metric (24) and here we do not pursue this argument.

3.2. Radial Motion

Now let us consider that the centroid of the wave packet moves with a velocity
v along a radial geodesic. Since v is measured by an observer in the local inertial
frame, we can write

v = c
d 1̂

d 0̂
= c

e1
r dr

e0
t dt

= eB(r)e−A(r) dr

dt
. (41)

Then, we obtain in this case the non-zero components of the four-velocity (in the
general frame) as

ut = e−A(r) cosh ξ, ur = c e−B(r) sinh ξ, (42)
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which lead to

q0 = Mc cosh ξ, q1 = Mc sinh ξ, q2 = q3 = 0, (43)

as the components of the four-momentum of the centroid.
Since the centroid moves along a geodesic, aa(x) = 0 and then the accelera-

tion related part in (9) vanishes. However, after doing some manipulations we see
that the curvature related part has two non-zero components as

χ0
1(r) = χ1

0(x) = −c A′(r)e−B(r) cosh ξ. (44)

Thus, the local infinitesimal LT has only two non-zero components as

λ0
1(r) = λ1

0(r) = −c A′(r)e−B(r) cosh ξ, (45)

which consists of a boost along the 1-axis.
Applying (45) in (15), we conclude that all of the components of ϑi

k vanish
and the Wigner rotation simply becomes Wa

b = δa
b, which has a trivial spin-s

representation as D
(s)
m′m(W (x)) = δm′m. These elements as substituted in (22), give

a pure density matrix identical with (21). Thus, there is no spin entropy production
in the case of radial motion.

However, there exists still a local LT as the centroid moves from ri to rf , that
is

�(rf , ri) = T exp

(∫ rf

ri

λ (r(τ )) dτ

)
. (46)

where the elements of the matrix λ(r) are given by (45). Correspondingly, the
operator U (�a

b(rf , ri)) will transform the initial state of radially falling particles
into a boosted frame along the 1-axis. One must be careful of time ordering, since
in the radial motion the variables r and τ are not independent.

4. DISCUSSION

We have generally proved that both acceleration and gravity cause to produce
spin entropy for particles moving along a path in a curved spacetime. For circular
paths in the static spherically symmetric spacetimes, we obtained an explicit
expression for the Wigner rotation, and determined the final mixed density matrix.
In this case as (37) exhibits, far from the center both gravity and acceleration
vanish, leading to a final pure density matrix with zero spin entropy. On the other
hand, depending on the nature of the spacetime we may find a circular path on it
the r dependent part of (37), that is �(r) = e−B(r)[A′(r) − 1/r], vanishes. Indeed,
on such a path the gravitational and the accelerative effects cancel each other, and
so the final state will be pure with zero spin entropy. To illustrate the points, it is
convenient to consider some examples.
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First we consider a black hole for that e−2B(r) = e2A(r) = (1 − rs/r), with rs

being the Schwarzschild radius. Then we have �(r) = (1 − rs/r)−1/2(1 − 3rs/2r),
which diverges at the event horizon, leading to a maximum mixing of the final state.
While, it vanishes for paths on the sphere of radius r = 3rs/2, leading to a zero
spin entropy. Because of peculiarity of the event horizon, there is a discrepancy
in the results of subsection 3.2 for radial paths terminating to points inside the
surface of the event horizon. One can make a similar but elaborate argument for
charged black holes.

Alternatively, for a traversable wormhole (Morris and Thorne, 1988), we have
e−2B(r) = 1 − b(r)/r with A(r) being a finite function everywhere. In wormhole
physics b(r) and A(r) are called shape-function and redshift function, respectively.
The finiteness of A(r) guaranties that the metric (24) has no event horizon. The
equation b(r) = r determines the radius of the throat of wormhole that is the
minimum value of r . In this case we have, �(r) = (1 − b(r)/r)[A′(r) − 1/r],
which is finite everywhere and vanishes only just at the throat. Then, for circular
paths coinciding the throat, the initial pure state remains intact. Because of the
absence of the event horizon, wave packets moving along a radial path, hence
without any spin entropy production, can traverse the throat and reach to the other
side of wormhole. This last point can be important for anyone who is going to
study information transferring through wormholes.
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